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PARALLEL TRANSPORT AND ANHOLONOMY

▶ Two vectors are displaced along

paths drawn on a sphere &

maintain a constant angle with the

surface locally.

▶ The vectors in the figure “rotate”

with respect to each other, but are

parallel to the sphere during

transport.

This global rotation without any

accompanying local rotation is a result

of the intrinsic curvature of the sphere.
Figure: Parallel transport
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BACKGROUND

▶ 1931 — Dirac writes about a path-dependent

non-integrable phase in a paper titled “Quantised
Signularities in the Electromagnetic Field” [1].

▶ 1980 — Provost & Vallee introduce a Riemannian metric

structure on the manifold of quantum states [2].

▶ 1984 — M. Berry proposes the quantum geometric phase

in a seminal paper [3].
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QUANTUM GEOMETRIC TENSOR

▶ The state of a quantum system is described by a ray (i.e.,

equivalence class of vectors which differ only by a phase)

in a complex (projective) Hilbert space, P
(
H
)
.

▶ For H = Hn finite-dimensional, the space P
(
Hn

)
can

equivalently be treated as a complex projective space:

P
(
Hn

)
= CPn−1 and structured as a smooth manifold.

▶ CPn−1 is naturally endowed with the Fubini-Study metric

— this carries mutually compatible complex, Riemannian,

and symplectic structures.
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QUANTUM GEOMETRIC TENSOR

The naturally emerging metric structure is the Quantum

Geometric Tensor (QGT).

Tij (uλ) ≡
〈
∂iuλ

∣∣ (1 − |uλ⟩ ⟨uλ|
) ∣∣ ∂juλ

〉
(∂i = ∂/∂(ki) with i = x, y & uλ is a wave function parametrized by λ).

The QGT is simply the Fubini-Study metric on the CPn−1

manifold (equivalently, the projective Hilbert space P(Hn)).
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QUANTUM GEOMETRIC TENSOR

Quantum states are represented by complex functions; hence,

the QGT is complex.

Tij ≡ gij +
i
2
Ωij

▶ The real (symmetric) part, gij, is the quantum metric.

▶ The imaginary (antisymmetric) part, Ωij, is the Berry

curvature.
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ELECTRONIC BAND STRUCTURE

The electronic band structure describes the allowed range of

energy levels that electrons may occupy.

Figure: Free space eigenstates.
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WHAT ARE FLAT ELECTRONIC BANDS?

E(k) =
ℏ2k2

2m∗

k wavevector

m∗ effective mass

The energy range spanned

by the entire band is called

the bandwidth ∆.

Flat bands are systems where the

energy of single electrons energy does
not depend on momentum.

▶ m∗ → ∞

▶ zero velocity

▶ electrons localized

▶ Fermi surface not well defined

▶ ∆ → 0.
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WHY ARE FLAT ELECTRONIC BANDS INTERESTING?

▶ In typical electronic band structures, we assume the
electron interaction energy scale is much smaller than ∆.
▶ Hence, electron-electron interactions are usually neglected.

▶ In a flat electronic band, ∆ → 0.
▶ Electron interactions can become the dominant interactions

in the system.
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WHY ARE FLAT ELECTRONIC BANDS INTERESTING?

Quantum geometric effects become prominent in systems with

flat electronic bands.

▶ Lower bound for stiffness in superconductors.

▶ Transport despite no group velocity.

▶ High superconducting critical temperature (twisted bilayer

graphene).



4p4d

S = 0

S = 1

1P

1D

1F

3P

3D

3F

1P1

1D2

1F3

2
1
0

3P0,1,2
3
2
1

3D1,2,3

4

3
2

3F2,3,4

BACKGROUND QUANTUM GEOMETRY FLAT BANDS PLASMONS FUTURE RESEARCH References

PLASMONS

▶ 1900 — Paul Drude develops the Drude model of electrical
conduction [4].
▶ 1933: Sommerfeld & Bethe incorporate quantum mechanics

into the Drude model.

Early models treat interactions within a collection of electrons

based on a free particle approximation.

However, this approximation mostly neglects the long-range

correlations of electron positions which result from Coulomb

interactions.
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PLASMONS

▶ 1952 — David Bohm & David Pines develop a “collective”
treatment of interactions in a collection of electrons,
describing long-range Coulomb interactions of electrons in
terms of collective fields which represent organized
so-called “plasma” oscillations of the whole system [5–8].
▶ 1956 — David Pines coins the term “plasmon” in a 1956

review article [9].



4p4d

S = 0

S = 1

1P

1D

1F

3P

3D

3F

1P1

1D2

1F3

2
1
0

3P0,1,2
3
2
1

3D1,2,3

4

3
2

3F2,3,4

BACKGROUND QUANTUM GEOMETRY FLAT BANDS PLASMONS FUTURE RESEARCH References

PLASMONS

More recently (2021), it has been demonstrated that there may

be nontrivial internal structure within plasmon wave functions;

moreover, that this may be intimately tied to their quantum

geometry [10].

▶ In [10], the authors considered the effects of the Berry

curvature — the imaginary (antisymmetric) part of the

QGT.
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FUTURE RESEARCH

Goal: Investigate manifestations of

quantum geometric effects in plasmons.

▶ Challenge: finding flat band systems where plasmons occur.

▶ In particular, how does the quantum metric manifest in

plasmons?
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Thank you!
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